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Diagonal 647, E-08028 Barcelona, Spain

E-mail: mondejar@ecm.ub.es

Antonio Pineda
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1. Introduction

The Operator Product Expansion (OPE) has been used since long in order to gain informa-

tion on the non-perturbative dynamics of the hadronic spectrum and decays [1 – 9]. In this

article we revisit this problem. We want to obtain the constraints that the knowledge of the

perturbative expansion in αs(Q
2) of the current-current correlators in the Euclidean regime

poses on the relation between the decay constants and the mass spectrum for excitations

with a large quantum number n (where n is the the quantum number of the bound state).

We put special emphasis in going beyond the leading-order parton computation. We will

work with a specific model for the hadronic spectrum. This is compulsory, since different

spectral functions1 may yield the same OPE expression, yet we believe some aspects of our

discussion may hold beyond the assumptions of our model.

In order to have a well defined bound state it is crucial to consider the large Nc

approximation [10]. This ensures infinitely narrow resonances at arbitrarily large energies.

We will consider to be in the large Nc limit in what follows, as well as in the exact chiral

(massless) limit. We will then set a specific model for the hadronic spectrum, valid for large

values of n (we only need the behavior of the spectrum and decays for large n, we do not

aim to get any information from perturbation theory for low values of n). This model will

be based on the Regge behavior plus corrections in 1/n that will be included in a systematic

way. The model is based on the assumption that the Regge behavior is a good description

1In particular the one derived directly from perturbation theory, which we do not consider, since we will

work in the large Nc limit with infinitely narrow resonances.

– 1 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
1

of the spectrum for large n (this can be explicitely seen in the ’t Hooft model [11] and it is

also consistent with phenomenology). Given the 1/n corrections to the mass spectrum, the

expression of the correlator can also be written as a systematic expansion in 1/n, where

higher powers in 1/n are equivalent to higher orders in 1/Q2 in its OPE. By matching

the OPE and hadronic expressions order by order in 1/Q2, we will be able to predict the

logarithmic dependence on n of the decay constants (actually also the constant terms).

This result can also be systematically organized within an expansion in 1/n together with

an expansion in 1/ ln n. We will give explicit expressions up to order 1/n2 and 1/ ln3 n.

We will also make some numerical estimates of the impact of these corrections. Finally, we

would like to stress that we are able to introduce power corrections in 1/n to the Regge

behavior and yet comply with the OPE. This is in contrast with ref. [5], where, besides

the Regge behavior, only exponentially suppressed terms are introduced (parametrically

smaller than any finite power of 1/n for large n). This parameterization is however fine if

considered as a fit not emanated from the large n limit.

2. Correlators

For definiteness, we will consider the vector-vector correlator but most of the discussion

applies to any other current-current correlator (axial-vector, scalar, . . . .).

Πµν
V (q) ≡ (qµqν − gµνq2)ΠV (q) ≡ i

∫

d4xeiqx〈vac|T
{

Jµ
V (x)Jν

V (0)
}

|vac〉 , (2.1)

where Jµ
V =

∑

f Qf ψ̄fγµψf . In order to avoid divergences, we will consider the Adler

function

A(Q2) ≡ −Q2 d

dQ2
Π(Q2) = Q2

∫ ∞

0

1

(t + Q2)2
1

π
ImΠV (t) dt , (2.2)

where Q2 = −q2 is the Euclidean momentum.

Since we are working in the large Nc limit, the spectrum consists of infinitely narrow

resonances, and the Adler function can be written in the following way

A(Q2) = Q2
∞
∑

n=0

F 2
V (n)

(Q2 + M2
V (n))2

. (2.3)

On the other hand, for large positive Q2, one may try to approximate the Adler function

by its OPE, which reads

AOPE(Q2) =
∑

f

Q2
f

[

4

3

Nc

16π2

(

1 +
3

8
Nc

αA(Q2)

π

)

(2.4)

+
C(αs(Q

2))

Q4
β(αs(ν))〈vac|G2(ν)|vac〉 + O

(

1

Q6

)]

,

where αA(Q2) admits an analytic expansion in terms of αs(Q
2) (computed in the MS

scheme),

β(αs) = −β0
αs(Q

2)

4π
− β1

(

αs(Q
2)

4π

)2

+ · · · , (2.5)

– 2 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
1

with β0 = 11/3Nc, β1 = 34/3N2
c , β2 = 2857/54N3

c , and [12]

C(αs(Q
2)) = −

2

11Nc

(

1 −
35

22
Nc

αs(Q
2)

4π
+ · · ·

)

. (2.6)

3. Matching

High excitations of the QCD spectrum are believed to satisfy linear Regge trajectories:

lim
n→∞

M2
V,n

n
= constant.

For generic current-current correlators, such behavior is consistent with perturbation

theory in the Euclidean region at leading order in αs if the decay constants are taken to

be “constants”, ie. independent of the principal quantum number n.

The inclusion of subleading effects in αs can be incorporated into this model by chang-

ing the n dependence of the decay constants without changing the ansatz for the spectrum.

The inclusion of these effects has consequences on subleading sum-rules and the relation

with the non-perturbative condensates.

Here we would like to go beyond the analysis at leading order in αs, as well as to

consider power-like corrections in 1/n. We will consider that the large n expression for the

mass spectrum can be organized within a 1/n expansion in a systematic way starting from

the asymptotic linear Regge behavior. In order to fix (and simplify) the problem we will

assume that no ln n term appears in the mass spectrum.2 Therefore, we write the mass

spectrum in the following way (for large n)

M2
V (n) =

∞
∑

s=−1

B
(−s)
V n(−s) = B

(1)
V n + B

(0)
V +

B
(−1)
V

n
+ · · · , (3.1)

where B
(−s)
V are constants. We will usually denote M2

V,LO(n) = B
(1)
V n, M2

V,NLO(n) =

B
(1)
V n + B

(0)
V and so on. To shorten the notation, we will denote B

(1)
V = BV , B

(0)
V = AV

and B
(−1)
V = CV .

For the decay constants, we will have a double expansion in 1/n and 1/ ln n.

F 2
V (n) =

∞
∑

s=0

F 2
V,s(n)

1

ns
= F 2

V,0(n) +
F 2

V,1(n)

n
+

F 2
V,2(n)

n2
+ · · · , (3.2)

where the coefficients F 2
V,s(n) have a logarithmic dependence on n:

F 2
V,s(n) =

∞
∑

r=0

C
(r)
V,s(n)

1

lnr n
. (3.3)

As we did with the masses, we will define F 2
V,LO(n) = F 2

V,0(n), F 2
V,NLO(n) = F 2

V,0(n) +
F 2

V,1
(n)

n
, and so on. Note that in this case we also have an expansion in 1/ ln n.

2This is a simplification. If one considers, for instance, the ’t Hooft model [11], ln n terms do indeed

appear.
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We are now in position to start the computation. Our aim is to compare the hadronic

and OPE expressions of the Adler function within an expansion in 1/Q2, but keeping the

logarithms of Q. In order to do so we have to arrange the hadronic expression appropiately.

Our strategy is to split the sum over hadronic resonances into two pieces, for n above or

below some arbitrary but formally large n∗, such that ΛQCDn∗ ≪ Q. The sum up to n∗ can

be analytically expanded in 1/Q2 and will not generate ln Q2 terms (neither a constant term

at leading order in 1/Q2). For the sum from n∗ up to ∞, we can use eqs. (3.1) and (3.2) and

the Euler-MacLaurin formula to transform the sum in an integral plus corrections in 1/Q2.

Whereas the latter do not produce logarithms, the integral does. These logarithms of Q

are generated by the large n behavior of the bound states and the introduction of powers

of 1/n is equivalent (once introduced in the integral representation, and for large n) to the

introduction of (logarithmically modulated) 1/Q2 corrections in the OPE expression.

Therefore, by using the Euler-MacLaurin formula, we write the Adler function in the

following way (B2 = 1/6, B4 = −1/30, . . . )

A(Q2) = Q2

∫ ∞

0
dn

F 2
V (n)

(Q2 + M2
V (n))2

+ Q2

[

n∗−1
∑

n=0

F 2
V (n)

(Q2 + M2
V (n))2

−

∫ n∗

0

F 2
V (n)

(Q2 + M2
V (n))2

]

+
Q2

2

F 2
V (n∗)

(Q2 + M2
V (n∗))2

+ Q2
∞
∑

k=1

(−1)k
|B2k|

(2k)!

d(2k−1)

dn(2k−1)

F 2
V (n)

(Q2 + M2
V (n))2

∣

∣

∣

∣

∣

n=n∗

, (3.4)

where n∗ stands for the subtraction point we mentioned above, such that for n larger than

n∗ one can use the asymptotic expressions (3.1) and (3.2). This allows us to eliminate

terms that vanish when n → ∞. Note that the last sum in eq. (3.4) is an asymptotic

series, and in this sense the equality should be understood.

Note also that for n below n∗, we will not distinguish between LO, NLO, etc. . . in

masses or decay constants, since for those states we will not assume that one can do an

expansion in 1/n and use eqs. (3.1) and (3.2).

Finally, note that the expressions we have for the masses and decay constants become

more and more infrared singular as we go to higher and higher orders in the 1/n expansion.

This is not a problem, since we always cut off the integral for n smaller than n∗. Either

way, the major problems would come from the decay constants, since, in the case of the

mass, Q2 effectively acts as an infrared regulator.

3.1 LO matching

We want to match the hadronic, eq. (3.4), and OPE, eq. (2.4), expressions for the Adler

function at the lowest order in 1/Q2. This means that we have to consider the lowest order

expressions in 1/n for the masses and decay constants, i.e. F 2
V,LO(n) and M2

V,LO(n), since

the corrections in 1/n give contributions suppressed by powers of 1/Q2.

Only the first term in eq. (3.4) can generate logarithms or terms that are not suppressed

by powers of 1/Q2. Therefore we obtain the following equality,

Apt.(Q2) ≡ Q2

∫ ∞

0
dn

F 2
V,LO(n)

(Q2 + M2
V,LO)2

=
4

3

Nc

16π2

∑

f

Q2
f

(

1 +
3

8
Nc

αA(Q2)

π

)

. (3.5)
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This equation can be fulfilled by demanding that

F 2
V,LO(n)

|dM2
V,LO(n)/dn|

=
1

π
ImΠpert.

V (M2
V,LO(n)) . (3.6)

By using the perturbative expression for ImΠpert.
V (see [13]), we obtain

F 2
V,LO(n) = BV

4

3

Nc

16π2

∑

f

Q2
f

{

1 +
3

8π
Ncαs(nBV ) +

243 − 176 ζ(3)

128π2
N2

c α2
s (nBV ) (3.7)

+
346201 − 2904π2 − 324528 ζ(3) + 63360 ζ(5)

27648π3
N3

c α3
s (nBV ) + O

(

α4
s (nBV )

)

}

,

where αs(nBV ) should actually be understood as a function of αs(BV ) and ln n. Therefore,

it is obvious that the above expression is resumming powers of αs(BV ) ln n:

F 2
V,LO(n) = BV

4

3

Nc

16π2

∑

f

Q2
f

{

1 +
3

2

1

1 + 11
3 Nc

αs(BV )
4π

ln(n)
Nc

αs(BV )

4π
(3.8)

+

(

2673 − 1936 ζ(3) − 408 ln
(

1 + 11
12π

Ncαs(BV ) ln(n)
))

88(1 + 11
3 Nc

αs(BV )
4π

ln(n))2

N2
c α2

s (BV )

(4π)2

+
N3

c α3
s (BV )

(4π)3
1

52272π(1 + 11
3 Nc

αs(BV )
4π

ln(n))3
[−350427Ncαs(BV ) ln(n)

+121π
(

346201 − 2904π2 − 324528 ζ(3) + 63360 ζ(5)
)

−3672π(2877 − 1936 ζ(3)) ln

(

1 +
11

12π
αs(BV ) ln(n)

)

+749088π ln2

(

1 +
11

12π
αs(BV ) ln(n)

)]

+ O
(

α4
s (BV )

)

}

.

Doing so we see that we are able to obtain the dependence of the decay constant in ln n

(somewhat we are assuming that αs(BV ) is a small parameter, BV ∼ 1 GeV).

We can also rewrite the decay constant as an expansion in 1/ ln n by using the equality

ln ñ =
1

β0

(

4π

αs(nBV )
+

β1

β0
ln

(

β0
αs(nBV )

4π

)

+

(

β2

β0
−

(

β1

β0

)2
)

αs(nBV )

4π

)

, (3.9)

where ñ = nBV /ΛMS. We then obtain

F 2
V,LO(n) = BV

4

3

Nc

16π2

∑

f

Q2
f

{

1 +
9

22

1

ln ñ
+

1

ln2 ñ

[

−
459

1331
ln ln ñ +

144

121

(

243

128
−

11

8
ζ(3)

)]

+
1

ln3 ñ

[

46818

161051
ln2 ln ñ +

459

322102
(−2877 + 1936ζ(3)) ln ln ñ +

42272605

2576816

−
3π2

22
−

20283 ζ(3)

1331
+

360 ζ(5)

121

]

+ O

(

1

ln4 n

)}

. (3.10)

Note that the lowest contribution in 1/ ln n for the decay constant, BV
4
3

Nc

16π2

∑

f Q2
f ,

which, usually, is the only one considered, reproduces the leading-order partonic prediction

for the Adler function.
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Note also that there is no problem with the Landau pole, even if the result is written

in the form of eq. (3.10), since it holds only for n larger than an n∗ such that ΛMS ≪ n∗BV

(the integral has an infrared cutoff at n∗).

Finally, we remind that, strictly speaking, we can only fix the ratio between the decay

constant and the derivative of the mass. We have fixed this ambiguity by arbitrarily

imposing the n dependence of the mass spectrum.

3.2 NLO matching

We now want to obtain extra information on the decay constant by demanding the validity

of the OPE at O(1/Q2), in particular the absence of condensates at this order. We then

have to use the NLO expressions for M2
V (n) and F 2

V (n). With the ansatz we are using for

the mass at NLO, it is compulsory to introduce (logarithmically modulated) 1/n corrections

to the decay constant if we want this constraint to hold. Note that it is possible to shift

all the perturbative corrections to the decay constant.

Imposing that the 1/Q2 condensate vanishes produces the following sum rule:

A
d

dQ2
Apt. −

A

Q2
Apt. +

1

Q2

[

n∗−1
∑

n=0

F 2
V (n) −

∫ n∗

0
dnF 2

V,LO(n)

]

+
F 2

V (n∗)

2Q2
(3.11)

+
1

Q2

∞
∑

k=1

(−1)k
|B2k|

(2k)!

d(2k−1)

dn(2k−1)
F 2

V (n)

∣

∣

∣

∣

∣

n=n∗

− Q2

∫ n∗

0
dn

F 2
V,1(n)/n

(Q2 + M2
V,LO(n))2

+Q2

∫ ∞

0
dn

F 2
V,1(n)/n

(Q2 + M2
V,LO(n))2

= 0 .

This equality should hold independently of the value of n∗, which formally should be taken

large enough so that αs(n
∗BV ) ≪ 1, i.e. the limit ΛMS ≪ n∗BV ≪ Q2. Again, the meaning

of the asymptotic series appearing in eq. (3.11) should be taken with care. If we forget

about this potential problem, only a few terms in eq. (3.11) can generate ln Q2 terms, which

should cancel at any order. Those are the first two and the last two terms. Actually, the

next to last term does not generate logarithms, but it allows to regulate possible infrared

divergences appearing in the calculation. Therefore, asking for the cancellation of the 1/Q2

suppressed logarithmic terms produced by the first two and the last term in eq. (3.11) fixes

F 2
V,1. The non-logarithmic terms should also be cancelled but they cannot be fixed from

perturbation theory.

One can actually find an explicit solution to the above constraint for F 2
V,1 by performing

some integration by parts. We obtain

F 2
V,1(n)

n
=

AV

BV

d

dn
F 2

V,0(n) (3.12)

= AV
4

3

Nc

16π2

∑

f

Q2
f

1

n

{

−
9

22

1

ln2 ñ
−

[

459

1331
(1−2 ln (ln ñ))+

2187

484
−

36 ζ(3)

11

]

1

ln3 ñ

+
3

2576816

[

−45794053 + 351384π2 + 41637552 ζ(3) − 7666560 ζ(5)

−3672 ln (ln ñ) (−3013 + 1936 ζ(3) + 204 ln (ln ñ))]
1

ln4 ñ
+ O

(

1

ln5 ñ

)}

,
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or in terms of αs(nBV ) or αs(BV ),

F 2
V,1(n)

n
= AV

4

3

Nc

16π2

∑

f

Q2
f

1

n

{

−
11

32π2
N2

c α2
s (nBV )−

2877−1936ζ(3)

768π3
N3

c α3
s (nBV ) (3.13)

−
11(376357−2904π2−344112ζ(3)+63360ζ(5))

110592π4
N4

c α4
s (nBV )+O

(

α5
s (nBV )

)

}

,

F 2
V,1(n)

n
= AV

4

3

Nc

16π2

∑

f

Q2
f

1

n

{

−
11

2

1

(1 + 11
3 Nc

αs(BV )
4π

ln(n))2
N2

c

α2
s (BV )

(4π)2
(3.14)

−

(

2877 − 1936 ζ(3) − 408 ln
(

1 + 11
12π

Ncαs(BV ) ln(n)
))

12(1 + 11
3 Nc

αs(BV )
4π

ln(n))3
N3

c

α3
s (BV )

(4π)3

−
1

4752π(1 + 11
3 Nc

αs(BV )
4π

ln(n))4
N4

c

α4
s (BV )

(4π)4
[−233618Ncαs(BV ) ln(n)

+121π
(

376357 − 2904π2 − 344112 ζ(3) + 63360 ζ(5)
)

−3672π(3013 − 1936 ζ(3)) ln

(

1 +
11

12π
αs(BV ) ln(n)

)

+749088π ln2

(

1 +
11

12π
αs(BV ) ln(n)

)]

+ O
(

α5
s (BV )

)

}

.

Note that besides the 1/n suppression, we also have an extra α2
s (nBV ) suppression.

In principle one could think of the existence of 1/n × constant terms in the decay

constant, i.e. without any associated logarithm. However, such terms produce ln(Q2)

contributions in the Euclidean regime that do not appear in the perturbative computation,

so they can be ruled out. This appears to be a general statement since 1/nm × constant

for any m integer also produces logarithms. Note that in order to give meaning to these

integrals it is implicit that the integral over n has an infrared cutoff at n∗. Nevertheless,

the logarithm does not appear to multiply powers of the infrared cutoff (as expected).

Finally, we would like to mention that, besides the constraints coming from the loga-

rithmic related behavior of the OPE, there is also the constraint from its constant terms,

which should sum up to zero. Nevertheless, for this constraint we cannot give a closed

expression. This is due to the fact that the ln Q2 independent terms may receive contribu-

tions from any subleading order in the 1/n expansion of the masses and decay constants.

The reason is that the decay constant at a given order in 1/n is obtained after performing

some integration by parts, which generate new (ln Q2-independent) terms that can be Q2

enhanced. This statement is general and also applies to any subleading power in the 1/Q2

matching computation.

3.3 NNLO matching

We now consider expressions for the mass and decay constants at NNLO. For the first time

we have to consider condensates. Simplifying terms that do not produce logs, we obtain

– 7 –
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the following equation,

35

121

αs(Q
2)

4π

β(αs(ν))〈vac|G2(ν)|vac〉

Q4
(3.15)

.
= Q2

∫ ∞

n∗

dn

(Q2 + BV n)2

[

F 2
V,2(n)

n2
−

1

BV

d

dn

(

CV F 2
V,0(n)

n
+

AV F 2
V,1(n)

2n

)]

,

where
.
= stands for the fact that we can only predict the lnQ2 dependence. Constant terms

are not fixed by this relation.

In order to get a more closed expression is convenient to use the following equality,

1

Q4
αs(Q

2)
.
= Q2

∫ ∞

n∗

dn

(Q2 + BV n)2
1

BV n2

β0

8π
α2

s (nBV ) , (3.16)

valid up to terms that do not produce logarithms or those that are subleading.

We get then

F 2
V,2(n) = −CV

4

3

Nc

16π2

∑

f

Q2
f

{

1 +
3

8π
Ncαs(nBV ) (3.17)

+

[

287 − 176 ζ(3)

128π2
−

11A2
V

64π2BV CV
−

35

88

β(αs(ν))〈vac|G2(ν)|vac〉

BV CV N2
c

]

N2
c α2

s (nBV )

+O
(

α3
s (nBV )

)}

.

Note that in this case we only consider up to O(α2
s (nBV )) corrections, since higher order

loops are unknown. The accuracy is set by our knowledge of the matching coefficient of the

gluon condensate. Note also that F 2
V,2(n) does not have αs suppression. Therefore, for low

n, this contribution could be practically of the same size than, formally, more important

terms.

4. Axial versus vector correlators

The above discussion has been performed for the vector-vector correlator Adler function.

It goes without saying that we could perform a similar analysis with axial-vector currents,

since the perturbative expansions for both correlators are equal. Here it comes an important

observation. We could change the coefficients for the mass spectrum BA 6= BV , AA 6= AV ,

· · · , yet we would obtain the same expression for the OPE (at the order we are working,

the first chiral breaking related effects are O(1/Q6)). Therefore, we conclude that the

OPE does not fix BA = BV as it is sometimes claimed in the literature [1, 3].3 Our

computation gives a specific counter example. Moreover, it is nice to see what the role

played by BA and BV is in our case. When one goes to the Euclidean regime, BA and

BV become renormalization factorization scales and, obviously, the physical result does

not depend on them (for large Q2 in the Euclidean). On the other hand, it is evident

that having different constants: BA, BV , . . . produces different physical predictions for the

3Another issue, on which we do not enter, is whether some other kind of arguments (relying on the

specific model used), like semiclassical arguments, may fix those parameters to be equal.
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masses and decay widhts for vector or axial-vector channels. The point to be emphasized

is that BA = BV cannot come from an OPE analysis alone. This point has already been

stressed in refs. [4, 8], what we think is novel in our analysis is that we have seen that the

inclusion of corrections in αs does not affect that conclusion, and that BA and BV play the

role of the renormalization scale in the analogous perturbative analysis in the Euclidean

regime, and are therefore unobservable. Finally, we cannot avoid mentioning the analysis

of ref. [14] where, using AdS/CFT, they explicitly find Regge behavior with different slopes

for vector and axial-vector channels.

In any case, even though the constants that characterize the spectrum can be different

for the vector and axial-vector channel, they have to yield the same expressions for the

OPE when combined with the decay constants. This produces some relations that we list

in what follows. We first define t ≡ BV n = BAn′ and take n and n′ as continuous variables.

We then obtain the following equalities,

F 2
V,LO(n)

BV
=

F 2
A,LO(n′)

BA
=

1

π
ImΠpert.

V (t) ≡ f0(t) , (4.1)

1

AV BV

F 2
V,1(n)

n
=

1

AABA

F 2
A,1(n

′)

n′
=

d

dt
f0(t) , (4.2)

1

BV

[

F 2
V,2(n)

n2
−

1

BV

d

dn

(

CV F 2
V,0(n)

n
+

AV F 2
V,1(n)

2n

)]

=
1

BA

[

F 2
A,2(n

′)

n′2
−

1

BA

d

dn′

(

CAF 2
A,0(n

′)

n′
+

AAF 2
A,1(n

′)

2n′

)]

=
1

t2
β(αs(ν))〈vac|G2(ν)|vac〉f1(t) , (4.3)

where

f1(t) =
35

121

β0

2

α2
s (t)

(4π)2
+ · · · . (4.4)

5. Numerical analysis

We restrict ourselves to the SU(2) case (non-strange sector) and study the vector and axial-

vector channels. We would like here to assess the importance of including perturbative

corrections to a standard analysis based on the OPE. We do not aim to perform a full

fledged analysis, but only to see the importance of the corrections. In table 1, we give the

values of the masses and decay constants. In figure 1 we show the changes in both FV,LO(I)

and FV,LO(II) as we include higher orders in the expansion in αs, and in figure 2 the changes

in the full FV (I) and FV (II) as we include higher orders in 1/n. In figure 3 we show the

same plots for the axial-vector case. We take the experimental values from ref. [15]. In

principle there are more states in the particle data book, in particular in the vector channel.

Nevertheless, it is not clear whether they belong to the same Regge trajectory or whether

they belong to some daughter one, see, for instance, the discussion in ref. [5]. For the time

being we will disregard the study of other possible (vector) Regge trajectories and restrict

the analysis to a single trajectory. We will consider the two possibilities listed in table 1.
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n = 1 n = 2 n = 3 n = 4

Mρ(I) 781.3(775.5 ± 0.4) 1440.2(1459 ± 11) 1891.8(1870 ± 20) 2257(2265 ± 40)

Mρ(II) 771.5(775.5 ± 0.4) 1471.7(1459 ± 11) 1855(1870 ± 20) 2154.8(2149 ± 17)

Ma1
1235.6(1230 ± 40) 1621.7(1647 ± 22) 1962(1930+30

−70) 2257.8(2270+55
−40)

FV (I) 156(156 ± 1) 155 154 153

FV (II) 185(156 ± 1) 147 139 135

FA 123(122 ± 24) 137 139 139

Table 1: We give the experimental values of the masses (in MeV) and electromagnetic decay

constants (when available) for vector and axial vector particles (within parenthesis), compared with

the values obtained from the fit. For the vector states we consider two possible Regge trajectories

that we label I and II respectively. We take αs(1 GeV) = 0.5 and β〈G2〉 = −(352 MeV)4.

2 4 6 8 10
n

150

152

154

156

158

FV,LOHIL

OHΑ0L
OHΑ1L

OHΑ2L
OHΑ3L

2 4 6 8 10
n

126

128

130

132

134

136

138

FV,LOHIIL

OHΑ0L
OHΑ1L

OHΑ2L
OHΑ3L

Figure 1: In this plot we show FV,LO(I) and FV,LO(II) at different orders in αs.

Our choice of states for the set (I) is motivated by the discussion of ref. [16] on the possible

formation of multiplets in the case of chiral symmetry restoration. The set (II) is based on

the assignment of states made in ref. [5] (based on the existence of S and D-wave daughter

trajectories) and in particular on the analysis of ref. [17], where the state 2265 is argued

to belong to the D-wave Regge trajectory.4

In order to fix the parameters of the mass spectrum we use the experimental values of

the masses we list in the table. We obtain the values:

BV (I) = 1.525×106 MeV2 , AV (I) = −1.038×106 MeV2 , CV (I) = 0.123×106 MeV2 ,

BV (II) = 1.128×106 MeV2 , AV (II) = 0.353×106 MeV2 , CV (II) = −0.885×106 MeV2 ,

BA = 1.278×106 MeV2 , AA = −0.100×106 MeV2 , CA = 0.349×106 MeV2 .

(5.1)

We should mention that the values obtained for these parameters are not very stable

under the change of number of data points, except for BV and BA, which are roughly stable,

although with quite sizeable uncertanties. For the subleading terms A and C, their values

are basically random with the fit. We roughly find BV ≃ BA within the uncertainties.

4We also thank S. Afonin for discussions on this point.
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2 4 6 8 10
n

148

150

152

154

FVHIL

LO
NLO
NNLO

2 4 6 8 10
n

132.5

135

137.5

140

142.5

145

147.5

150

FVHIIL

LO
NLO
NNLO

Figure 2: In this plot we show FV (I) and FV (II) at different orders in the 1/n expansion.

2 4 6 8 10
n

134

136

138

140

142

144

146

FA,LO

OHΑ0L
OHΑ1L

OHΑ2L
OHΑ3L

2 4 6 8 10
n

137

138

139

140

141

142

FA

LO
NLO
NNLO

Figure 3: In this plot we show FA,LO and FA at different orders in αs and in the 1/n expansion,

respectively.

The n dependence of the axial and vector (model II) decay constants is small but sizeable

(and it goes in the right direction for low n). The 1/n corrections are always corrections

compared with the leading order terms. Nevertheless, the 1/n2 correction is much larger

than the 1/n one for the range of values of n that we explore. This appears to be due

to the α2
s/(4π)2 suppression of the 1/n term, as well as to the difference in size between

the constants A and C. This is so for the axial and vector (model II) decay constants.

Nevertheless, for the vector (model I) decay constants the n dependence appears to be

quite small also at NNLO. This appears to be due to the small value of the coefficient

CV (I). The gluon condensate contribution is a small correction to the total NNLO term.

Either way, our predictions compare favorably with experiment when this comparison is

possible.

We should keep in mind that these results have been obtained for a specific model, so

we are testing the impact of the perturbative corrections for this specific model. On the

other hand, if one believes that the large n behavior of the spectrum is dictated by the

Regge behavior and that the corrections can be obtained as an expansion in 1/n, the set

up is general. The only ambiguity comes from where the logarithms should be introduced

(masses or decays). At this respect it is worth mentioning that, as a matter of principle,

this ambiguity could be fixed if enough experimental information were available for the

masses and decays.
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6. Conclusions

We have studied the constraints that the OPE imposes on large Nc inspired QCD models

for current-current correlators. We have focused on the constraints obtained by going

beyond the leading-order parton computation. We have explicitly showed that, assumed

a given mass spectrum (Regge plus corrections in 1/n), we can obtain the logarithmic

(and constant) behavior in n of the decay constants within a systematic expansion in 1/n.

More than that, power-like 1/n corrections can only be incorporated in the analysis if full

consideration to the perturbative corrections in the Euclidean regime is made. This is due

to the fact that this type of contributions produce logarithms of Q in the Euclidean (this is

one of the reasons why this sort of corrections are not usually considered in quark-hadron

duality analysis). On the other hand, the existence of lnn in the decay constants may

point to the existence of two scales in the problem, ΛQCD and nΛQCD, in the Minkowski

regime.

We have also performed some numerical estimates of the importance of these correc-

tions. The n dependence of the decay constants is small but sizeable for the axial and vector

(model II) channel, for the vector (model I) one this dependence is small. On the other

hand the uncertainties of the calculation are large. Either way, our predictions compare

favorably with experiment when this comparison is possible.

Our example shows that it is possible to have different large n behavior for the vector

and pseudo-vector mass spectrum and yet comply with all the constraints from the OPE.

An important caveat of our analysis is that we have not considered what the effect

of renormalons could be. We have focused on the effect of low orders in perturbation

theory to the decay constants. It would be interesting to see whether the knowledge of

the higher order behavior of perturbation theory may give some extra constraints on the

values of these constants and the mass spectrum. At this respect we have to say that

we have obtained approximated expressions for the decay constants as an expansion in

αs(nBV ), with just the low order contributions in αs. It is quite likely that this expansion

is asymptotic and that different orders in 1/n are related in a similar way to the one found

in the renormalon analysis for the OPE expansion for different orders in 1/Q2. Therefore,

the results obtained for the 1/n corrections could be affected as well by the asymptotic

behavior of the 1/ ln n expansion in the leading-order term. This is obviously related with

renormalons. We expect to come back to this issue in the future.
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